Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Immunol ; 13: 821681, 2022.
Article in English | MEDLINE | ID: covidwho-1708117

ABSTRACT

Peritoneal dialysis (PD) is a valuable 'home treatment' option, even more so during the ongoing Coronavirus pandemic. However, the long-term use of PD is limited by unfavourable tissue remodelling in the peritoneal membrane, which is associated with inflammation-induced angiogenesis. This appears to be driven primarily through vascular endothelial growth factor (VEGF), while the involvement of other angiogenic signaling pathways is still poorly understood. Here, we have identified the crucial contribution of mesothelial cell-derived angiogenic CXC chemokine ligand 1 (CXCL1) to peritoneal angiogenesis in PD. CXCL1 expression and peritoneal microvessel density were analysed in biopsies obtained by the International Peritoneal Biobank (NCT01893710 at www.clinicaltrials.gov), comparing 13 children with end-stage kidney disease before initiating PD to 43 children on chronic PD. The angiogenic potential of mesothelial cell-derived CXCL1 was assessed in vitro by measuring endothelial tube formation of human microvascular endothelial cells (HMECs) treated with conditioned medium from human peritoneal mesothelial cells (HPMCs) stimulated to release CXCL1 by treatment with either recombinant IL-17 or PD effluent. We found that the capillary density in the human peritoneum correlated with local CXCL1 expression. Both CXCL1 expression and microvessel density were higher in PD patients than in the age-matched patients prior to initiation of PD. Exposure of HMECs to recombinant CXCL1 or conditioned medium from IL-17-stimulated HPMCs resulted in increased endothelial tube formation, while selective inhibition of mesothelial CXCL1 production by specific antibodies or through silencing of relevant transcription factors abolished the proangiogenic effect of HPMC-conditioned medium. In conclusion, peritoneal mesothelium-derived CXCL1 promotes endothelial tube formation in vitro and associates with peritoneal microvessel density in uremic patients undergoing PD, thus providing novel targets for therapeutic intervention to prolong PD therapy.


Subject(s)
Chemokine CXCL1/metabolism , Neovascularization, Pathologic/pathology , Peritoneal Dialysis/methods , Peritoneum/blood supply , Renal Replacement Therapy/methods , COVID-19/pathology , Cells, Cultured , Child , Child, Preschool , Epithelium/metabolism , Humans , Infant , Interleukin-17/metabolism , Kidney Failure, Chronic/therapy , Peritoneum/pathology , Vascular Endothelial Growth Factor A/metabolism , Vascular Remodeling/physiology
2.
Cells ; 10(7)2021 Jul 06.
Article in English | MEDLINE | ID: covidwho-1295777

ABSTRACT

Integrins belong to a group of cell adhesion molecules (CAMs) which is a large group of membrane-bound proteins. They are responsible for cell attachment to the extracellular matrix (ECM) and signal transduction from the ECM to the cells. Integrins take part in many other biological activities, such as extravasation, cell-to-cell adhesion, migration, cytokine activation and release, and act as receptors for some viruses, including severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). They play a pivotal role in cell proliferation, migration, apoptosis, tissue repair and are involved in the processes that are crucial to infection, inflammation and angiogenesis. Integrins have an important part in normal development and tissue homeostasis, and also in the development of pathological processes in the eye. This review presents the available evidence from human and animal research into integrin structure, classification, function and their role in inflammation, infection and angiogenesis in ocular diseases. Integrin receptors and ligands are clinically interesting and may be promising as new therapeutic targets in the treatment of some eye disorders.


Subject(s)
Eye Diseases/metabolism , Inflammation/metabolism , Integrins/metabolism , Neovascularization, Pathologic/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , Cell Adhesion , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Eye Diseases/pathology , Humans , Inflammation/pathology , Integrins/analysis , Neovascularization, Pathologic/pathology , SARS-CoV-2/metabolism
3.
Angiogenesis ; 24(4): 755-788, 2021 11.
Article in English | MEDLINE | ID: covidwho-1286153

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 ß [IL-1ß] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.


Subject(s)
COVID-19/metabolism , Myelopoiesis , Neovascularization, Pathologic/metabolism , Respiratory Distress Syndrome/metabolism , SARS-CoV-2/metabolism , Thrombosis/metabolism , COVID-19/pathology , COVID-19/therapy , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/virology , Fibrin Fibrinogen Degradation Products/metabolism , Fibroblast Growth Factor 2/metabolism , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Membrane Proteins/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/therapy , Neovascularization, Pathologic/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , Thrombosis/pathology , Thrombosis/therapy , Thrombosis/virology , Vascular Endothelial Growth Factor A/metabolism , von Willebrand Factor/metabolism
4.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L358-L376, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1280497

ABSTRACT

Capillary endothelial cells possess a specialized metabolism necessary to adapt to the unique alveolar-capillary environment. Here, we highlight how endothelial metabolism preserves the integrity of the pulmonary circulation by controlling vascular permeability, defending against oxidative stress, facilitating rapid migration and angiogenesis in response to injury, and regulating the epigenetic landscape of endothelial cells. Recent reports on single-cell RNA-sequencing reveal subpopulations of pulmonary capillary endothelial cells with distinctive reparative capacities, which potentially offer new insight into their metabolic signature. Lastly, we discuss broad implications of pulmonary vascular metabolism on acute respiratory distress syndrome, touching on emerging findings of endotheliitis in coronavirus disease 2019 (COVID-19) lungs.


Subject(s)
COVID-19/complications , Endothelium, Vascular/metabolism , Neovascularization, Pathologic/pathology , Pulmonary Circulation , Respiratory Distress Syndrome/epidemiology , SARS-CoV-2/isolation & purification , COVID-19/transmission , COVID-19/virology , Endothelium, Vascular/pathology , Endothelium, Vascular/virology , Humans , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/virology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology
5.
Cells ; 10(5)2021 05 07.
Article in English | MEDLINE | ID: covidwho-1223961

ABSTRACT

The flavonoid naringenin (Nar), present in citrus fruits and tomatoes, has been identified as a blocker of an emerging class of human intracellular channels, namely the two-pore channel (TPC) family, whose role has been established in several diseases. Indeed, Nar was shown to be effective against neoangiogenesis, a process essential for solid tumor progression, by specifically impairing TPC activity. The goal of the present review is to illustrate the rationale that links TPC channels to the mechanism of coronavirus infection, and how their inhibition by Nar could be an efficient pharmacological strategy to fight the current pandemic plague COVID-19.


Subject(s)
COVID-19 Drug Treatment , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Flavanones/pharmacology , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Arabidopsis/metabolism , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Calcium Channel Blockers/therapeutic use , Drug Evaluation, Preclinical , Endosomes/drug effects , Endosomes/metabolism , Endosomes/virology , Flavanones/therapeutic use , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/virology , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Pandemics/prevention & control , SARS-CoV-2/pathogenicity , Vacuoles/metabolism , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL